Intro
continuous state-space를 다루던 DDPM을 discrete state space에서 작동하게 만든 것이 D3PM이다. 때문에 DDPM과 비유를 통했을 때(특히 Jonathan Ho가 논문에 참여한만큼) 훨씬 수월하게 이해할 수 있다.
One-sentence Summary
- kor: 기존 Multinomial diffusion model을 generalize시킴으로써 discrete state space에서 더 잘 작동하게 된 diffusion model (D3PM)을 선보인 논문
- en: Introducing Discrete Denoising Diffusion Probabilistic Model (D3PM) which works better in discrete state space as it generalizes the existing multinomial diffusion model
- A link for the paper: https://openreview.net/forum?id=h7-XixPCAL
- The PPT file I made for the review: 220920_Structured Denoising Diffusion Models in Discrete State-Space
Analogy with DDPM
- Denoising Diffusion Probabilistic Model (Ho et al., 2020)
Intro에서 언급 DDPM: Gaussian kernel (continuous space)-> known stationary distribution D3PM: Transition matrix (discrete space)-> known stationary distribution forward를 단계적으로 할 필요는 없이, 전체 timestep 1..T 중 arbitrary t를 sampling할 수 있다.
state-space | diffuses input with | converges to | according to | forwards by t with | model outputs (reverse) | |
---|---|---|---|---|---|---|
D3PM | discrete | Transition Matrix (Multinomial dist.) | stationary dist. | Markov chain | cumulative product | t-step reverse |
DDPM | continuous | Gaussian Kernel (Gaussian dist.) | stationary dist. (Gaussian) | noise schedule | noise schedule | 1-step reverse |
Forward Process
forward process를 표로 간단하게 도식화해보자면,
sampling (stochasticity) with | according to.. | |
---|---|---|
DDPM | Gaussian dist. | noise schedule |
D3PM | Multinomial dist. | Markov chain |
still writing..