Home Model review: Structured Denoising Diffusion Models in Discrete State-Space (Ho et al., 2021)
Post
Cancel

Model review: Structured Denoising Diffusion Models in Discrete State-Space (Ho et al., 2021)

Intro

continuous state-space를 다루던 DDPM을 discrete state space에서 작동하게 만든 것이 D3PM이다. 때문에 DDPM과 비유를 통했을 때(특히 Jonathan Ho가 논문에 참여한만큼) 훨씬 수월하게 이해할 수 있다.

One-sentence Summary

Analogy with DDPM

  • Denoising Diffusion Probabilistic Model (Ho et al., 2020)
    Intro에서 언급 DDPM: Gaussian kernel (continuous space)-> known stationary distribution D3PM: Transition matrix (discrete space)-> known stationary distribution forward를 단계적으로 할 필요는 없이, 전체 timestep 1..T 중 arbitrary t를 sampling할 수 있다.
 state-spacediffuses input withconverges toaccording toforwards by t withmodel outputs (reverse)
D3PMdiscreteTransition Matrix (Multinomial dist.)stationary dist.Markov chaincumulative productt-step reverse
DDPMcontinuousGaussian Kernel (Gaussian dist.)stationary dist. (Gaussian)noise schedulenoise schedule1-step reverse

Forward Process

forward process를 표로 간단하게 도식화해보자면,

 sampling (stochasticity) withaccording to..
DDPMGaussian dist.noise schedule
D3PMMultinomial dist.Markov chain

still writing..

This post is licensed under CC BY 4.0 by the author.