Home 디퓨젼 모델 리뷰 계획!!(A review plan for diffusion models)
Post
Cancel

디퓨젼 모델 리뷰 계획!!(A review plan for diffusion models)

writers!

reviewerhomepage
ssbaehttps://seongsubae.info/
mjleehttps://mjbooo.github.io/
ebchohttps://eunbyeol-cho.github.io/

paper list!

#DateReviewerTitle
122-07-29mjleeClassifier-Free Diffusion Guidance (Ho et al., 2021)
222-08-05ssbaeDiffusion-LM Improves Controllable Text Generation (XL Li et al., 2022)
322-09-20mjlee[Structured Denoising Diffusion Models in Discrete State-Spaces (Ho et al., 2021)]

후보들

Improved Denoising Diffusion Probabilistic Models (Nichol et al., 2021)

  • DDPM에 몇 가지 modification을 더해서 높은 log-likelihood, 안정적인 학습 양상을 얻었음을 주장하는 논문
  • Introducing Improved DDPM which can be stably trained and achieve high log-likelihood by adding few modifications to DDPM)
  • https://arxiv.org/abs/2102.09672

Classifier-Free Diffusion Guidance (Ho et al., 2021)

  • Diffusion Models Beat GANs on Image Synthesis에서 수행한 classifier-guidance를 pre-trained classifier 없이도 (classifier-free) 수행할 수 있음을 보인 논문
  • Introducing classifier-free guidance which can perform the functionality of classifier-guidance without the pre-trained classifier, necessitated in previous paper ‘Diffusion Models Beat GANs on Image Synthesis’
  • https://openreview.net/forum?id=qw8AKxfYbI

Structured Denoising Diffusion Models in Discrete State-Spaces (Ho et al., 2021)

  • 기존 Multinomial diffusion model을 generalize시킴으로써 discrete state space에서 더 잘 작동하게 된 diffusion model (D3PM)을 선보인 논문
  • Introducing Discrete Denoising Diffusion Probabilistic Model (D3PM) which works better in discrete state space as it generalizes the existing multinomial diffusion model.
  • https://openreview.net/forum?id=h7-XixPCAL

Imagen

  • TBC..

Glide (?)

  • TBC..

High-Resolution Image Synthesis with Latent Diffusion Models: Diffusion for latent vectors

  • TBC..

Diffusion Autoencoders: Toward a Meaningful and Decodable Representation

  • TBC..
This post is licensed under CC BY 4.0 by the author.